

Object-Oriented Technology
By Tsang, Lau & Leung 2005 Mcgraw-Hill 2005

Chapter 2

What is a object 16
What is a Class and what are instances 18
Summary of UML notation 34
Structural analysis techniques 35
Domian modeling and Analysis process 39
Tricks and Tips in Structural analysis modeling and Analysis 54
Domain modeling and Analysis with VP-UML 55
Summary 70
Exercise 71

Chapter 2: Structural Modeling and Analysis 15

15

Chapter

2
Structural Modeling and Analysis

Overview
Structural modeling is concerned with describing “things” in a system and how
these things are related to each other. A “thing” can be an object, a class, an
interface, a package or a subsystem, which is part of the system being
developed. For example, a class diagram can be used to describe the objects and
classes inside a system and the relationships between them. The software
components of a system in a component diagram can be described by providing
details as to how these software components are deployed in terms of
computing resources, such as a workstation.

Structural modeling is a very important process because it is employed
throughout the entire system development life cycle. At the early analysis
stage, a structural model is developed to describe the objects identified from the
problem domain. As time progresses, the structural model is refined and new
ones created in the process. Early versions of a structural model are usually
incomplete, and as such are refined iteratively and incrementally. System
implementation commences only when the structural model contains sufficient
details.

What You Will Learn
On completing the study of this chapter, you should be able to:

• describe and apply the fundamental object-oriented concepts
• use the standard Unified Modeling Language (UML) notation to represent

classes and their properties

16 Object-oriented Technology

• model the structural aspects of problems with the class model
• perform domain analysis to develop domain class models

What Is an Object?
An object is a self-contained entity with well-defined characteristics (properties
or attributes) and behaviors (operations). For example, the real-life
environment consists of objects such as schools, students, teachers and courses
which are related in one way or another. A student has a name and an address
as its characteristics. Similarly, a subject has a title and a medium of
instruction as its characteristics.

An object generally has many states, but it can only be in one state at a
time. The state of an object is one of the possible conditions in which an object
may exist. The state is represented by the values of the properties (attributes)
of an object. In different states, an object may exhibit different behaviors.
For example, in the awake state, a person may have behaviors such as
standing, walking or running, while in the sleeping state, the person may have
behaviors such as snoring or sleepwalking. For objects such as a human being
or an automobile, a complete description of all the states of these objects can
be very complex. Fortunately, when objects are used to model a system, we
typically focus on all the possible states of the objects that are relevant only to
and are within the scope of that system.

The behavior of an object relates to how an object acts and reacts.
An object’s behaviors are also known as functions or methods. The behavior is
determined by a set of operations that the object can perform. For example,
through the physical interface of the VCR system, functions like play, rewind
and record can be performed, while simultaneously changing the state of the
system.

Types of Objects

Physical and Conceptual Objects

Objects can be broadly classified as physical or conceptual objects, and they are
things that we find around us in the real world. We interact with physical and
conceptual objects all the time. In software development, real-life objects are
naturally mapped onto objects of a software system.

Physical (tangible) objects are visible and touchable things such as a book,
a bus, a computer or a Christmas tree. In an automated teller machine (ATM),
the card reader and the receipt printer are examples of physical objects.

Chapter 2: Structural Modeling and Analysis 17

Conceptual objects are intangibles such as a bank account and a time
schedule. Very often, conceptual objects are thought of as physical objects.
For example, we would normally say we pay the mortgage (conceptual object)
every month, instead of saying we pay the bankbook (where the money is
deposited). We mix conceptual objects and physical objects all the time as they
are well understood within the context. Some of these concepts may only be
understood within a small society or even within a group of domain experts.
The object designer, therefore, needs to talk to the domain experts to gain the
necessary domain knowledge so that they can use the objects, concepts and
terminologies that are well understood by the people working in that domain.

Domain and Implementation Objects

The beauty of object-orientation is that different software engineers are likely
to identify similar sets of domain objects for the same area of application
because of the natural mapping of real-world entities to objects. The objects
identified from the real world are domain objects. Collectively, we call all objects
which are not related to real-world entities as implementation objects.
For example, bank accounts, tellers and customers are domain objects that we
come across daily. On the other hand, the transaction log which provides
information for error recovery is obviously an implementation object.

Domain objects tend to be more stable throughout the development life
cycle as the latter is unlikely to incur a major change in the specification of the
domain objects since these objects form the foundation (architecture) of a
software system. On the other hand, implementation objects are more likely to
change when the requirements are altered. For example, bank accounts,
customers and banks are domain objects in an ATM system. Most software
designers can identify a similar set of domain objects. In contrast, they have
greater flexibility in choosing the implementation objects in order to satisfy the
implementation constraints, such as performance and usability.

Active and Passive Objects

An object can be active or passive. It is necessary to distinguish between active
objects and passive objects because they require different strategies for
implementation. An active object is an object that can change its state. For
example, timers and clocks can change their states without an external
stimulus. Active objects are usually implemented as processes or threads, which
are also referred to as “objects with life.” With a passive object, the state of an
object will not change unless the object receives a message. For example, the
properties of a bank account will not change unless the bank account receives
a message such as set balance (an operation for updating the balance of an

18 Object-oriented Technology

account). Because the majority of objects are passive, sometimes it is
automatically assumed that all objects are strictly passive.

What Is a Class and What Are Instances?
A class is a generic definition for a set of similar objects. It is an abstraction of
a real-world entity that captures and specifies the properties and behaviors
that are essential to the system but hides those that are irrelevant. The class
also determines the structure and capabilities of its instances (objects). Thus, a
class is a template or blueprint for a category of structurally identical items
(objects). Objects are instances of a class. In other words, a class is like a mold
and an instance of a class is like a molded object.

It is very important to understand the differences between classes and
instances in order to get to grips with this chapter. A class has methods and
attributes while object instances have behaviors and states. This concept is
illustrated in Figure 2.1. In this example, bank account is a class. Bank account
is a generic term that covers many different account types. John’s and Robert’s
accounts are instances of the bank account class. Although their accounts are
of a type of bank account and are not generic.

Figure 2.1. UML notation for objects and classes

Object 1 : Bank Account

name � John Smith
balance � 1,000.0

Object 2 : Bank Account

name � Robert Jones
balance � �200.0

Bank Account

�name
�balance

�debit(in amount)
�credit(in amount)

The bank account class specifies that a bank account object has name and
balance as its private properties (indicated by a “�” sign) and public credit and
debit operations (indicated by a “�” sign). It is noteworthy that the two
instances are in different states. John’s account is in the credit state (positive
balance), while Robert’s account is in the overdrawn state (negative balance).
The state of the objects can be changed by calling the credit or debit operations,
e.g. Robert’s account can be changed to the credit state if a credit operation is
invoked with a parameter of, say, 300.

Chapter 2: Structural Modeling and Analysis 19

Attributes
Things in the real world have properties. An attribute is a property of a class.
Other words for attribute include “property,” “characteristic” and “member
data.” For example, a book can be described in terms of its author, ISBN
(International Serial Book Number), publisher, among others. More properties
can be associated with the class book such as the number of pages, its weight,
physical dimensions and so on. The abstraction of a book is limited to a specific
problem domain so that the number of required properties can be reduced. For
example, information on the weight and dimensions may be required for a
delivery company but totally irrelevant to an information system of a bookstore.

From a human perspective, a property is a characteristic that describes an
object. From a technical perspective, an attribute is a data item where an object
holds its own state information. In summary, attributes have a name and a
value, and attributes may also have a type, e.g. “integer,” “Boolean.”

Operations
Each object can perform a set of functions in order to provide a number of
services in a software system. This is similar to the situation in a company
where each member of staff provides a set of services to other members and
customers. An object calls another object’s service by sending it a message.
A service is defined by one or more operations, and an operation is a function
or a procedure which can access the object’s data. An operation consists of two
parts: a name and argument(s). Thus, every object must define its operations
for each of its services. The collection of operations is the object’s interface.
Other objects only need to know the interface of an object in order to invoke the
operations provided by the object.

An operation is sometimes called a method or a member function. These two
terms are more widely used by programmers than designers. To a programmer,
an operation is like a function (or procedure). The return value is the result that
an operation “brings back” on completion. This is a useful way of allowing other
objects to find out a piece of information about an object. In programming
language, operations are similar to functions in that they have parameters and
return values. For example, the savings account class in an ATM banking
system may have the following operations:

• withdraw(amount)
• deposit(amount)
• getBalance()

20 Object-oriented Technology

Encapsulation: Information Hiding
Objects are like black boxes. Specifically, the underlying implementations of
objects are hidden from those that use them. This is a powerful concept called
information hiding, better known as the encapsulation principle. In object-
oriented systems, it is only the producer (creator, designer or developer) of an
object that knows the details of the internal construction of that object.
The consumers (users) of an object are denied knowledge of the inner workings
of the object and must deal with an object via one of its three distinct interfaces:

• Public interface which is open (visible) to everybody.
• Protected interface which is accessible only by objects that have inherited

the properties and operations of the object. In class-based, object-oriented
systems, only classes can provide an inheritance interface. (Inheritance and
specialization will be discussed later).

• Parameter interface. In the case of parameterized classes, the parameter
interface defines the parameters that must be supplied to create an
instance. For example, a linked list of objects may have a parameter that
specifies the type of object contained in the linked list. When the linked list
is used, the actual type of object can be provided.

Structural Modeling Techniques
In UML, a class is simply represented by a rectangle divided into three
compartments, containing, from top to bottom, the class name, a list of
attributes and a list of operations (see Figure 2.2). Each attribute name may be
followed by optional details such as a type and a default value. Each operation
may be followed by optional details such as an argument list and a result type.
In most cases, the bottom two compartments are omitted, and even when they
are present, they typically do not show every single attribute and operation.
Typically, only those attributes and operations that are relevant to the current
context will be shown in a diagram. We can also specify the accessibility of an
element (an attribute or an operation) by prefixing its name by a “�,” “�,” or
“#” sign. The “�,” “�,” and “#” signs respectively indicate that an element is
private, public or protected.

Figure 2.2. Classes providing different levels of details

ClassName

ClassName

�attribute

ClassName

�attribute

�operation()

Chapter 2: Structural Modeling and Analysis 21

Figure 2.3 shows how a class is represented in the UML notation. Classes
and objects are distinguished by underlining the object name and optionally
followed by the class name.

Figure 2.3. UML notation for classes

ObjectName: ClassName

ClassName

�attribute1: Type
�attribute2: Type

�operation1(parameter1: Type,…):ReturnType
�operation2(parameter2: Type,…):ReturnType

Figure 2.4 shows two examples of classes. In the first example, the Shape
class has origin and color as attributes, with move and resize as operations. In
the second example, the bank account class has account number and customer
name as attributes and performs get balance and set balance operations.

Figure 2.4. Examples of classes in UML

Shape

�origin
�color

�move()
�resize()

Bank Account

�accountName
�customerName

�getBalance(): float
�setBalance()

Naming Classes
It is common practice to name a class with a noun or a noun phrase, but there
are no firm rules on naming the elements (classes, attributes, etc.) of class
models. The system development team should decide when and where upper
case letters and spaces should be used, and it is important that all members of
the team stick to the team’s decision. When using name phrases, a widely used
convention is to eliminate spaces and concatenate the words with their first
letters in upper case, e.g. SavingsAccount and BankAccount.

Relationships between Classes
Relationships exist among real-life objects. For example, friendship and
partnership are common examples of relationships among people. Similarly,
a relationship specifies the type of link that exists between objects. Through the

22 Object-oriented Technology

links of an object, it is possible to discover the other objects that are related to
it. For example, all the friends of a person John can be determined through the
links to John.

Finding relationships between classes is an important part of
object-oriented modeling because relationships increase the usefulness of a
model. Identifying relationships can help find new classes and eliminate bad
ones. Furthermore, it may lead to the discovery of relevant attributes and
operations.

There are essentially three important types of relationships between
classes: generalization/specialization (“type-of”), aggregation (“part-of”) and
association relationships.

Inheritance

Object-oriented programming languages facilitate inheritance that allows the
implementation of generalization-specialization associations in a very elegant
manner. Attributes and operations common to a group of subclasses are
attached to a superclass and inherited by its subclasses; each subclass may also
include new features (methods or attributes) of its own. Generalization is
sometimes called the “is-a” relationship. For example, checking accounts and
savings accounts can be defined as specializations of bank accounts. Another
way of saying this is that both a checking account and a savings account “is-a”
kind of a bank account; everything that is true for a bank account is also true
for a savings account and a checking account.

Properties of Inheritance

Generalization

The purpose of this property is to distribute the commonalities from the
superclass among a group of similar subclasses. The subclass inherits all the
superclass’s (base class) operations and attributes. That is, whatever the
superclass possesses, the derived class (subclass) does as well. Taking the
BankAccount example from above, if BankAccount (superclass) has an
account_number attribute, the CheckingAccount (subclass) will also have the
same attribute, account_number, as it is a subclass of BankAccount. It would be
unnecessary and inappropriate to show the superclass attributes in the
subclasses. Similarly, suppose there is a bank application for an ATM machine.
If BankAccount has the operation setBalance, then SavingsAccount will
automatically inherit this operation as well. It would be a mistake to duplicate
the attributes and operations in the superclass in its subclasses as well unless
those operations have different implementations of their own. Figure 2.5
illustrates the concept of generalization, with CheckingAccount and

Chapter 2: Structural Modeling and Analysis 23

SavingsAccount inheriting their superclass’s (BankAccount) attributes and
operations.

Figure 2.5. BankAccount and its subclasses

Superclass

Subclass
CheckingAccount

�checkClearing()

SavingsAccount

�interest

�addInterestToBalance()

BankAccount

�accountNumber
�password {encrypted}
�balance {balance �� 0.0}

�getBalance() : float
�setBalance()

Specialization

Specialization allows subclasses to extend the functionalities of their
superclass. A subclass can introduce new operations and attributes of
its own. For example, in Figure 2.5, SavingsAccount inherits attributes
account_number, password and balance from BankAccount and extends the
functionalities of BankAccount with an additional attribute, interest, and an
additional operation, addInterestToBalance. A SavingsAccount has the attribute
interest that BankAccount does not because not all bank accounts earn interest.

Abstract Classes

An abstract class is used to specify the required behaviors (operations) of a class
without having to provide their actual implementation. An operation without
the implementation (body) is called an abstract operation. A class with one or
more abstract operations is an abstract class. An abstract class cannot be
instantiated because it does not have the required implementation of the
abstract operations. An abstract class can act as a repository of shared
operation signatures (function prototypes) for its subclasses and so those
methods must be implemented by subclasses according to the signatures.
A class (or an operation) can be specified as abstract in the UML by writing its
name in italics, such as for the class Shape. Here, the class Shape is abstract
because we cannot draw a shape; we can only draw its subclasses such as

24 Object-oriented Technology

rectangles, circles, etc. Figure 2.6 shows an example of the abstract class Shape
and its subclasses. The subclasses provide the actual implementations of their
draw operations since Rectangle, Polygon and Circle can be drawn in different
ways. A subclass can override the implementation of an operation inherited
from a superclass by declaring another implementation (body of the operation).
In the example, the draw operation in the Rectangle class overrides the
implementation of the draw operation inherited from the Shape class.

Figure 2.6. Shape as an example of an abstract class

Shape

�origin
�color

�move()
�resize()
�draw()

Circle

�draw()

Polygon

�draw()

Rectangle

�draw()

Polymorphism

Polymorphism is the ability for a variable to hold objects of its own class and
subclasses at runtime. The variable can be used to invoke an operation of the
object held. The actual operation being invoked depends on the actual class of
the object that is referenced by the variable. For example, suppose the variable
“shape” is of type Shape. If shape references a Rectangle object, then
shape.draw() invokes the draw() method of the Rectangle class. Similarly, if
shape references a Polygon object, the draw() method of the Polygon class is
invoked by shape.draw().

Association

Object-oriented systems are made up of objects of many classes. Associations
represent binary relationships among classes. An association is represented by
a line drawn between the associated classes involved with an optional role
name attached to either end. The role name is used to specify the role of an
associated class in the association. If an association connects between two
objects instead of classes, it is called a link. A link is an instance of an
association. For example, Figure 2.7 illustrates the WorkFor relationship

Chapter 2: Structural Modeling and Analysis 25

between the Person and Company classes. The relationship carries the meaning
of “a person works for one company.” Figure 2.7 illustrates that Bill Gates
works for Microsoft and that many people can work for a company.

Figure 2.7. Association and link

Bill Gates:Person
WorkFor

Microsoft:Company

Name of link

Person
WorkFor

Company

Name of association

Employee Employer

11..n

Links provide a convenient way to trace the relationship between objects.
However, do not spend too much time trying to identify all possible
relationships between classes, as the implementation of these association
relationships adds to the overheads in your system. Only specify those
relationships that are necessary for the requirements of the system, and focus
on questions such as: “While you are operating on one object, do you need to
know the information of another object(s)?”

Role

Each end of an association has a role. You may optionally attach a role name
at the end of an association line. A role name uniquely identifies one end of an
association. For example, the role of a person in the WorkFor relationship is
employee and the role of a company is employer (See Figure 2.7). From the
object’s point of view, tracing the association is an operation that yields an
object or a set of related objects at the other end of the association. For example,
the employees of Microsoft can be determined by following the WorkFor
association. During the analysis stage, an association is often considered to be
bi-directional, that is, tracing can be done from either end of the association.
However, during the design stage, only one direction may be needed to
implement the requirements of the system.

Multiplicity

Multiplicity refers to the number of objects associated with a given object. For
the WorkFor association in Figure 2.8, a person works for one and only one
company since the multiplicity on the Company side is 1. On the other hand,

26 Object-oriented Technology

a company may have one or more persons working in it. If the multiplicity is
not explicitly specified, the default value of 1 is assumed.

Figure 2.8. Association and role

Multiplicity

Person
WorkFor

Company
Employee Employer

11..n

Role of company

Qualification

Qualification serves as names or keys that are part of the association and are
used to select objects at the other end of the association. Qualification reduces
the effective multiplicity of the association from one-to-many to one-to-one.
In UML, a qualifier is used to model this association semantic, that is, an
association attribute whose value determines a unique object or a subset of
objects at the other end of the association. For example, a bank is associated
with many customers. The account number (qualifier) specifies a unique person
of a bank (a customer) (see Figure 2.9).

Figure 2.9. (a) Many-to-many association between Person and Bank and (b) reduced
to a one-to-many association

(a)

accountNoPerson
0..1 0..n

(b)

Bank

Person
0..n 0..n

Bank

Reflexive Association and Roles

A reflexive association is an association that relates one object of a class to
another object of the same class. In other words, a class can be associated with
itself. There are two types of reflexive associations, namely, directional and
bi-directional.

Chapter 2: Structural Modeling and Analysis 27

Figure 2.10a a shows an example of a directional reflexive association
where the class Course is associated with itself. Here, a course may be a
prerequisite for another course. Figure 2.10b shows an example of a
bi-directional reflexive association where a parent directory (role: host) contains
zero or more subdirectories (role: accommodated by).

Figure 2.10 (a) A directional reflexive association and (b) a bi-directional reflexive
association

Course

PrerequisiteFor

(a)

0..n

Directory

accommodated by

host

(b)

N-ary Association

Associations are often binary, but higher order associations are also possible.
A relationship involving three classes is referred to as a ternary relationship,
and one involving many classes is referred to as an n-ary relationship. An n-ary
association is represented by a diamond connecting the associated classes.
In Figure 2.11, for example, a Student that takes a Course taught by a
particular Instructor exhibits a ternary relationship.

Figure 2.11. A ternary association

Student Instructor

Course

28 Object-oriented Technology

When modeling association relationships among classes, binary association
is the most preferred form. A higher-order association can always be
decomposed into a corresponding number of binary associations, and it is
possible to convert some of the bi-directional relationships into unidirectional
relationships in our class model during the design phase. For example, we can
represent the ternary association in Figure 2.12 as three binary associations
instead:

• a Student enrolls a Course
• an Instructor teaches a Course
• an Instructor trains a Student

Association Classes

It is sometimes necessary to describe an association by including additional
attributes which do not naturally belong to the objects involved in the
association. In Figure 2.13, for example, the year of the enrollment of a student
in a course does not belong to the student or course classes. In this case,
an association class Enrollment is added to hold the attribute year.

There are situations where an association is complex enough to be a class
in its own right. The association has its own class name and may have
operations just like any other ordinary class. In the example of the association
between a Person and a Company (Figure 2.14), the Position class contains the
attributes of the association between the Person and the Company. The Position
class has attributes of its own that do not naturally belong to Person or
Company. Therefore, it is only natural or beneficial that the information
belonging only to the object is contained in a separate class so as to maximize
the level of module cohesion. It may sometimes be possible to transfer the
attributes from the Position class to the Person or Company class. However, this
move significantly affects the reusability of those classes, as the association
attributes may be meaningful only in a specific context but not others.
For example, in Figure 2.14, the Person class may well be suitable for other
applications that do not need to know the Position information. Furthermore,
if the Position class information in transferred to either the Person or Company
class, it will rule out the possibility that a Person may have more than one
Position with the same or another Company.

Figure 2.12. Three binary associations replacing a ternary association

Enrolled in Taught by

Trained by

Student Course Instructor

Chapter 2: Structural Modeling and Analysis 29

Figure 2.13. An association class

Student Course Instructor

Enrollment

�year

Taught by

Trained by

Enrolled in

Figure 2.14. Using an association class

Position

�title
�startingDate
�salary

Person Company0..n 0..nWorkFor

Aggregation

Aggregation is a stronger form of association. It represents the has-a or
part-of relationship. In UML, a link is placed between the “whole” and “parts”
classes, with a diamond head (see Figure 2.15) attached to the whole class to
indicate that this association is an aggregation. Multiplicity can be specified at

Figure 2.15. Example of aggregation

0..n

Position

�title
�startingDate
�salary

0..n
Person DepartmentDivisionCompany

1..n 1..n

30 Object-oriented Technology

the end of the association for each of the “part-of” classes to indicate the
quantity of the constituent parts. Typically, aggregations are not named,
and the keywords used to identify aggregations are “consists of,” “contains” or
“is part of.”

Composition

A stronger form of aggregation is called composition, which implies exclusive
ownership of the “part-of” classes by the “whole” class, i.e. a composite object
has exclusive ownership of the parts objects. This means that parts may be
created after a composite is created, but such parts will be explicitly removed
before the destruction of the composite. In UML, a filled diamond (see
Figure 2.16) indicates the composition relationship. In Figure 2.15, it is more
natural (closely resembling scenarios in the real world) for Division(s) and
Department(s) to be created after the Company is set up and they will not exist
if the Company closes down.

Figure 2.16. Example of composition

0..n

Position

�title
�startingDate
�salary

0..n
Person DepartmentDivisionCompany

1..n 1..n

Constraints and Notes

Constraints are an extension of the semantics of a UML element that allow the
inclusion of new rules or the modification of existing ones. It is sometimes
helpful to present an idea about restrictions on attributes and associations for
which there is no specific notation. Simply write them in braces near the class
concerned. Constraints are represented by a label in curly brackets
({constraintName} or {expression}) that are attached to the constrained
element. In the ATM banking example (see Figure 2.17), the password of a
bank account is encrypted and the balance is not less than $0.

You can specify constraints for two associations such as {for}, {or}, {subset},
etc. Such constraints are called complex constraints. The {or} constraint

Chapter 2: Structural Modeling and Analysis 31

indicates that only one of the associations can exist at any given time.
The {subset} constraint indicates that an association is a subset of another.

Figure 2.17. Example of constraints

BankAccount

�accountNumber
�password {encrypted}
�balance {balance �� 0}

Jockey Club Person

OrdinaryMemberOf

VIPMemberOf

{subset}

Figure 2.18. Complex constraints

{or}

CDROM

NoteBook

DVD

Figure 2.18 shows two examples of complex constraints. In the first
example, the Jockey Club has two kinds of members: ordinary members
and VIP members. The VIPMemberOf association is a subset of the
OrdinaryMemberOf association. In other words, a VIP member is also an
Ordinary member. In the second example, a Notebook computer has either a
CDROM or DVD association but not both.

32 Object-oriented Technology

Figure 2.19. Note annotation

Permanent PartTimeContract

Staff Memer

Check human resource
policy: HR-101

A note, represented by a dog-eared rectangle in UML, is a graphical symbol
for holding constraints or comments attached to an element or a collection of
elements. A note can also be used to link or embed other documents. It is very
useful to add comments to UML models with plain text notes to provide further
explanation or clarification that might not be apparent. In Figure 2.19, a note
is used to provide further details about the source of information of the classes.

Structural Models: Examples

Example 1: A Car
A car consists of different structural components such as the engine, body,
suspension, gearbox, etc. Each component in turn contains its own attributes
and operations. For example, the engine has its capacity, and it can be started
or stopped. Figure 2.20 shows a simplified structural model of a car in a class
diagram.

Example 2: A Sales Order System
In this simple sales order system example, there are three methods of payment:
cash, credit card or check. These three payment methods have the same
attribute (amount), but they have their own individual behaviors and
attributes. Figure 2.21 shows a structural model of this simple sales order
system in a class diagram. The directional associations in the diagram indicate
the direction of navigation from one class to another. For example, the Order
class can access information from the Payment class, but not the other way
round.

Chapter 2: Structural Modeling and Analysis 33

Figure 2.20. Structural model of a car

Engine

capacity : float
numberOfCylinders : int

start()
stop()
accelerate()

Car

registrationNo
model
year
licenseNumber

moveForward()
moveBackward()
stop()
turnRight()
turnLeft()

1 1 1 1

1 n

1 1 1
 Brake

type

apply()

1
n

1
1

Tire

width
airPressure

 Wheel

diameter

 Suspension

springRate

Body

numberOfDoors

GearBox

gearBoxType : string
gearRatio : float[]
currentGear : int

shiftUp()
shiftDown()

1

1

Figure 2.21. Structural model for a sales order system

1..n

Order

id
date
deliveryDateTime

 Customer

name
address
phone

OrderLine

quantity

getSubTotal()

 Product

unitPrice
description

 Payment

amount

 Check

bankID
checkID

CreditCard

cardNumber
verificationCode
expireDate

isValid()

Cash

cashTendered

0..n

1

0..n 1

1

1

34 Object-oriented Technology

Summary of UML Notation for Structural Modeling
UML provides a comprehensive range of components for structural modeling.
Table 2.1 summarizes the more common ones in the UML notation. In this
chapter, we have discussed how to use the class model in structural modeling
from the analysis perspective. Thus, only some of the constructs in Table 2.1 are
introduced.

Table 2.1. Summary of UML notation for structural modeling

Construct Description Syntax

class A set of objects that share the same
attributes, operations, methods,
relationships and semantics

interface A set of operations that characterize
the behavior of an element

component A modular, replaceable and significant
part of a system that packages
implementation and exposes a set of
interfaces

node A runtime physical object that
represents a computational resource

constraint A semantic condition or restriction

association A relationship between two or more
classifiers that involves connections
between their instances

aggregation A special form of association that
specifies a whole–parts relationship
between the aggregate (whole) and the
components (parts)

generalization A taxonomic relationship between a
more general and a more specific
element

Component
Interface

{constraint}

Chapter 2: Structural Modeling and Analysis 35

Table 2.1. (Cont’d)

Construct Description Syntax

dependency A relationship between two modeling
elements, in which a change to one
modeling element (the independent
element) will affect the other modeling
element (the dependent element)

realization A relationship between a specification
and its implementation

Structural Analysis Techniques
In developing object-oriented systems, we often adopt a bottom-up approach
first to develop a set of highly reusable components for assembling our system.
These components should also be suitably placed in a flexible and expandable
system architecture that can only be carried out through a top-down approach.
To do this, a set of highly reusable components is developed first before they are
assembled to form the system. In order to develop a stable system architecture
that can comfortably accommodate the object components, the top-down and
bottom-up approaches are often applied in an inter-play manner throughout the
system development life cycle.

This section shall discuss various domain analysis techniques for object
identification, after which leads you through the classical object identification
process by performing a textual analysis. A set of long-established heuristics are
elaborated, followed by a case study.

How Are Classes Obtained?
Practitioners and methodologists always claim that the object-oriented
approach is far superior to the traditional structured approach. This may well
be true. However, for those new to the object-oriented approach, they often find
object identification a very difficult task, especially because a real-world object
may be considered as either an attribute or an object depending on the context.
For example, a city is a physical object in the real world. In the context of an
address, City is only an attribute of the Person class. In an urban planning
system, City would be a class itself.

36 Object-oriented Technology

How good a class model is can be judged by examining its usability,
extendibility and maintainability. Furthermore, a good class model should be
reusable in other object-oriented system components, so that the fruits of
reusability can be harvested. Reusability is one of the key advantages of the
object-oriented approach.

To tackle the object identification problem, both domain analysis and use
case analysis (see Chapter 4 for details of the use case analysis) should be
performed. Domain analysis starts with the problem statement to produce a
class model (see Figure 2.22). Domain analysis focuses on identifying reusable
objects that are common to most applications of the same problem domain.
Hence, objects specific to the system can also be identified from use case
descriptions. The results of both the domain analysis and use case analysis can
be adopted to produce a robust and versatile class model. This will ensure that
the class model can fulfill the users’ requirements and be reused for other
applications in the same domain.

Figure 2.22. Two ways to perform object identification

Textual
analysis

Problem
statement

Use case
descriptions

Class
model

Keeping the Model Simple
Once you start modeling more than just a handful of classes, be sure that your
abstractions provide a balanced set of responsibilities. What this means is that
any one class should not be too big or too small. Each class should do one thing
well. If the classes are too big, the models will be difficult to change and not
very reusable. If the classes are too small, this will result in too many classes

Chapter 2: Structural Modeling and Analysis 37

in the model, which may be difficult to manage or understand. The “rule of
seven” is often used, which postulates that people’s short-term memory can only
cope with about seven chunks of information at a time.

When there are more than seven classes, draw diagrams for different
contexts. For example, in a retail information system, the classes can be
packaged according to different areas of activities such as sales, inventory
control, purchasing, etc., which in turn are represented in different class
diagrams. It is often necessary to develop the same diagram iteratively and
incrementally. In other words, the initial version of the diagram tends to be
conceptual and should capture the “big picture” of the model. Later iterations
capture additional details and are generally more implementation-oriented.
Expect to revise the model many times before you are happy with it.

Heuristics in Using Structural Analysis
The following list of heuristics can help you perform structural analysis:

• Do not attempt to develop a single giant class diagram. Choose only those
that fit into the context. For example, a class diagram may only represent
one major system functionality (use case) instead of the entire system.
Remember: humans can process about seven chunks of information at one
time.

• Use model management constructs such as subsystems, packages and
software framework to form the system architecture through the top-down
approach.

• Consider both logical and physical aspects, such as grouping by role,
responsibility, deployment and/or hardware platform, when grouping
classes into model management constructs.

• Use data or middleware for communication among major subsystems
whenever possible. Data coupling is easier to maintain than logical coupling
because a change in requirements will only result in a change in data, and
not the program itself. It is, however, not possible for some real-time or time
critical applications since performance may become an important issue.

• Wisely apply design patterns for those architecturally significant classifiers
to make the system architecture flexible and adaptable. This will be
discussed in detail in Chapter 6.

• Apply domain analysis such as textual analysis, Class-Responsibility-
Collaboration (CRC) or legacy and documentation reviews to identify
reusable components using a bottom-up approach, so that the concepts and
terminologies are understood and well accepted by the industry.

38 Object-oriented Technology

• Inter-play what have been found in the top-down approach and the
bottom-up approach to ensure that the resulting artifacts (architecture,
subsystem and components) can comfortably coexist.

• Use packages to organize the domain classes incrementally as development
progresses. Each system functionality (use case) developed in turn will yield
a set of domain classes. The set of domain classes should then be grouped
into appropriate packages so that each package contains a cohesive set of
classes. Organizing the classes into packages can also make it easier to
manage the domain class model as it grows.

• Conduct use case analysis to yield two artifacts: a set of use case instance
scenarios to help us walk through the objects that participate (are required)
in the interaction, and the responsibilities (operations) that are required to
be assigned to each object through the analysis of the messages sent to and
from it. These resulting artifacts (a set of objects and its operations) help
us identify the missing pieces in the structural model.

• Review whether a particular class is becoming too large. If so, consider
reorganizing the class into two or more classes and structure the resulting
classes using relationships.

Conducting Domain Modeling and Analysis
Domain analysis seeks to identify classes and objects that are common to many
applications in a domain. This is partly to avoid wasting time and effort in
reinventing the wheel and to promote reusability of the system components.
Domain analysis involves finding out what other people have done in
implementing other systems and looking at the literature in the field. Bear in
mind that the object-oriented approach is superior to the traditional structured
approach because of system reusability and extendibility, and not because they
are more trendy or popular.

As already stated, the goal of domain analysis is to identify a set of classes
that are common to all applications when dealing with problems of the same
domain. Then, according to their nature, the domain classes and the
application-specific classes are grouped into different packages. In so doing,
the cohesion of the class model is maximized and the coupling between classes
minimized, greatly enhancing the system’s maintainability and extendibility. In
short, the benefit of domain analysis is that domain classes can be reused for
other applications when solving problems in the same domain. Furthermore,
using well-understood terminologies in the domain for naming domain classes
will improve the readability of the documentation.

Chapter 2: Structural Modeling and Analysis 39

Unfortunately, there is no simple or straightforward way to identify a set
of classes for a problem domain. The domain analysis relies heavily on the
designer’s knowledge of the problem domain, intuition, prior experience and
skills. A common way to perform a domain analysis is to prepare a statement
of the problem domain first and then perform a textual analysis to identify the
candidate classes. The problem statement and textual analysis provide a good
starting point for domain analysis. The candidate classes are then refined
iteratively to add the associations, attributes and operations to the domain
class model (see the next section for details).

Domain Modeling and Analysis Process

Overview
Before domain analysis is conducted, we need to understand the problem
domain of the system. We need to find out the general requirements of the
system of the domain by interviewing users and the domain experts of the
system. After interviewing them, a problem statement can be prepared.
The output of the domain analysis is a domain class model describing the
classes and their relationships. The domain class model consists of class
diagrams, a data dictionary describing the classes and their associations, and
definitions of terminologies.

Developing Domain Class Models
The domain analysis starts with the preparation of a problem statement to
provide a generic description of the problems of the domain. The problem
statement is usually prepared after interviewing experts in the domain.
Rumbaugh et al. recommend the following steps for developing a domain class
model (see Figure 2.23):

1. Preparing the problem statement
2. Identifying the objects and classes using textual analysis
3. Developing a data dictionary
4. Identifying associations between classes
5. Identifying attributes of classes and association classes
6. Structuring classes using inheritance
7. Verifying access paths for likely queries
8. Iterating and refining the model

40 Object-oriented Technology

Preparing Problem Statement

Before any analysis work is carried out, it is important to clearly describe the
problem in the context of the domain. A clear and detailed problem statement
helps to reduce misunderstanding and the possibility of significant reworking
at a later stage. Since the objective of domain analysis is to develop a class
model that can be reused in other applications to solve problems in the same
domain, it will be expedient that the problem statement describes the general
requirements of the domain rather than the requirements of a specific
application. The problem description should, therefore, focus on the description
of the objects and their relationships in the domain rather than the specific
procedures of the problem domain, since the procedures for carrying out tasks
would not be the same for every organization. For example, in the problem

Figure 2.23. Domain analysis process

Transaction
Transaction

Bank
Bank

Account
Account

Customer
Customer

Textual
analysis

Problem
statement

Candidate classes

Customer

Bank

Account

Transaction

Customer Account

Transaction Bank

Initial domain class model

Customer
�name
�address

Account
�balance

Bank
�name

Transaction
�amount

Credit Card Account
�credit limit

Current Account
�overdraft limit

Account
�balance

Customer
�name
�address

Bank
�name

Transaction
�amount

Restructured class model

Withdraw Transaction

Transfer Transaction
�destination account

Classes with attributes

Chapter 2: Structural Modeling and Analysis 41

statement for the banking domain, it should be described that a customer can
have several accounts with a bank but avoid specifying how a person opens a
bank account since each bank has its own procedure in performing the same
operation. As problem statements are written in natural language, they may
have ambiguities and inconsistencies. Therefore, the problem statement is just
one of the many inputs to the domain analysis. Throughout the analysis
process, we need to use our own judgment or that of domain experts to resolve
such ambiguities and inconsistencies.

Online Stock Trading Example

The following problem statement is for an automated online stock trading
system for a stock brokerage firm.

A stock brokerage firm wants to provide an online stock trading service
to enable its clients to make trades via the computer. With this system,
a client must first be registered before he can trade online. The
registration process involves the client providing his ID number,
address and telephone number. A client may open one or more accounts
for stock trading. The stock brokerage firm needs to be registered with
a stock exchange before its clients can trade the stocks listed on the
stock exchange. A stock brokerage firm can be registered with one or
more stock exchanges. The stock brokerage firm may need to pay
monthly charges for using the services provided by the stock exchange.
Once registered, the client can buy and sell stocks. The client can check
the current price, bid price, ask price and traded volume of a stock in
real time. The stock price and traded volume information is provided by
the stock exchange on which the stock is listed and traded. When a
client issues a buy order for an account, the client must specify the
stock code, the number of shares and the maximum price (bid price)
that he is willing to pay for them. A client must have sufficient funds
in his account to settle the transaction when it is completed. When a
client issues a sell order, the client must specify the stock code, the
number of shares and the minimum price (ask price) that he is willing
to sell them. The client must have sufficient number of shares of the
stock in his account before he can issue the sell order.

A client can check the status of execution of his (buy or sell) orders.
The client can issue a buy or sell order before the end of the trading day

42 Object-oriented Technology

of the stock exchange which processed the order. All trade orders will be
forwarded to the stock trading system of the stock exchange for
execution. When an order is completed, the stock trading system of the
stock exchange will return the transaction details of the order to the
online stock trading system. The transaction details of a trade order
may be a list of transactions, each transaction specifying the price and
the number of shares traded. For example, the result of a buy order of
20,000 HSBC (stock code: 0005) shares at HKD 88.00 in the Hong Kong
Stock Exchange may be as follows:

• 4,000 shares at HKD 87.50
• 8,000 shares at HKD 87.75
• 8,000 shares at HKD 88.00

An order will be kept on the system for execution until the order is
completed or the end of a trading day. There are three possible
outcomes for a trade order:

1. The trade order is completed. For a buy order, the total amount for
the buy order will be deducted from the client’s account and the
number of shares of the stock purchased will be deposited into the
account. For a sell order, the number of shares sold will be deducted
from the client’s account and proceeds of the sell order will be
deposited into the client’s account.

2. The trade order is partially completed. The number of shares
actually traded (sell or buy) is less than the number of shares
specified in the order. The number of shares successfully traded in
the order will be used to calculate the amount of the proceeds, and
the client’s account is adjusted accordingly.

3. The trade order is not executed by the end of a trading day.
The order will be canceled.

A stock exchange may require that the number of shares specified
in an order must be in multiples of the lot size of the stock. Each stock
has its own lot size. Common lot sizes are 1, 400, 500, 1,000 and
2,000 shares.

The client can deposit or withdraw cash or stock shares from his
account. Upon the deposit or withdrawal of cash or stock shares,
the account cash or stock balance will be updated accordingly.

Chapter 2: Structural Modeling and Analysis 43

Identifying Objects and Classes

To identify the objects and classes, perform textual analysis to extract all noun
and noun phrases from the problem statement. The objective of this step is to
identify a set of candidate objects which can be further elaborated and refined
in subsequent steps. Therefore, it is not necessary (nor possible) to get it right
the first time. Rather, do not be too selective in choosing classes at this stage
so as to avoid the possibility of excluding some classes. For each extracted noun
or noun phrase, we need to carefully evaluate whether it actually represents an
object of the domain. It is necessary to stress that the object identification
process is not a straightforward task. A noun or noun phrase can be an object
in one domain and not so in another. We need to exercise our own judgment in
the process. Amour and Miller (2001) suggest that from their past experiences,
nouns or noun phrases of the following categories are more likely to represent
objects:

• Tangibles (e.g. classroom, playground)
• Conceptuals (e.g. course, module)
• Events (e.g. test, examination, seminar)
• External organizations (e.g. publisher, supplier)
• Roles played (e.g. student, teacher, principal)
• Other systems (e.g. admission system, grade reporting system)

Table 2.2 shows the nouns and noun phrases extracted from the problem
statement of the online stock trading example.

Table 2.2 Nouns and noun phrases extracted from the problem statement

Stock brokerage firm (concept) Buy order (event)

Monthly charge Stock code (simple value, attribute)

Trade (event) Number of shares (simple value,
attribute)

Trade order (event) Maximum price (simple value, attribute)

Computer (tangible) Transaction (event)

Client (role played) Sell order (event)

ID (simple value, attribute) Trading hours (simple value, attribute)

Address (simple value, attribute) Trading day (simple value, attribute)

44 Object-oriented Technology

Table 2.2 (Cont’d)

Telephone number (simple value, Stock trading system (other systems)
attribute)

Account (concept) Order (event)

Stock Exchange (extenal organization) Execution result (event)

Stock (concept) HSBC (instance of stock)

Current price (simple value, attribute) Hong Kong Stock Exchange (instance of
stock exchange)

Bid price (simple value, attribute) Lot size (simple value, attribute)

Ask price (simple value, attribute) Registration process (not an object)

Traded volume (simple value, attribute)

As the purpose of this step is to identify the classes in the domain, other
issues, such as inheritance and implementation, should be ignored. They will be
dealt with in later steps. For each extracted noun or noun phrase, a category
is assigned to it as shown in parentheses in Table 2.2. The candidate classes are
then consolidated by eliminating inappropriate ones. Rumbaugh et al. (1991)
suggest a set of criteria for eliminating inappropriate classes (see Table 2.3):

Table 2.3. Categories of inappropriate classes

Categories Description

Redundant Classes that mean the same thing. For example, order, trade and
classes trade order mean the same thing. Eliminate trade and order,

and retain trade order. Choose the most descriptive class.

Irrelevant Classes that are not directly related to the problem. For
classes example, monthly charge is not directly related to the system.

Vague classes Classes that are loosely defined.

Attributes Attributes of classes are also represented as nouns or noun
phrases. Therefore, the list of nouns or noun phrases extracted
by textual analysis may contain attributes of classes. For
example, address and telephone number are attributes of the
client.

Chapter 2: Structural Modeling and Analysis 45

Table 2.3. (Cont’d)

Categories Description

Operations The performance of actions is sometimes expressed as nouns or
noun phrases. For example, the registration process is the action
taken by the client to register on the system. It should be
considered an operation of a class, rather than a class.

Roles Role names help to differentiate the responsibilities of the objects
in an interaction. However, they should not be considered as
classes.

Implementation Implementation details of a particular solution are sometimes
constructs written in the problem statement, e.g. array, indexed sequential

file, etc. Candidate classes representing the implementation
details should be removed.

After following the above guidelines, a number of classes may be found to
be inappropriate (see Table 2.4) in the online stock trading example.

Table 2.4. Inappropriate classes

Stock brokerage firm (irrelevant) Stock code (attribute)

Monthly charge (irrelevant) Number of shares (attribute)

Trade (redundant) Maximum price (attribute)

Computer (implementation) Trading hours (attribute)

ID (attribute) Trading day (attribute)

Address (attribute) Order (redundant)

Telephone number (attribute) HSBC (instance of stock)

Current price (attribute) Hong Kong Stock Exchange (instance of
stock exchange)

Bid price (attribute) Lot size (attribute)

Ask price (attribute) Registration process (operation)

Traded volume (attribute)

46 Object-oriented Technology

The revised list of candidate classes is shown in Table 2.5 after removing
the inappropriate classes in Table 2.4.

Table 2.5. Revised list of candidate classes

Trade order (event) Transaction (event)

Client (role played) Sell order (event)

Account (concept) Stock trading system (other systems)

Stock Exchange (external organization) Execution result (event)

Buy order (event) Stock (concept)

Developing Data Dictionary

After the candidate classes have been consolidated, prepare a data dictionary
to record the definition of classes. For each class, write a short description to
define its scope as well as details about the class such as its attributes and
operations. The data dictionary also describes the associations between the
classes and is continuously revised throughout the entire development life cycle
of the system. Table 2.6 shows the data dictionary for the online trading system
example.

Table 2.6. Data dictionary for the candidate classes

Class Definition

Client An individual or a company registered with the stock
brokerage firm for online stock trading services. The class
has attributes address, telephone number and ID. A client
may have one or more accounts.

Account A client can issue trade order on his or her accounts. An
account holds details about the cash and stock balances for
trading.

Stock exchange A financial institution that provides a platform where stock
trading is carried out.

Chapter 2: Structural Modeling and Analysis 47

Table 2.6. (Cont’d)

Class Definition

Stock trading system A platform for the execution of the trade orders of stock.

Trade order A trade order specifies the price, stock code and number of
shares. A trade order can be a buy order or a sell order.

Buy order A buy order specifies the bid price, stock code and number
of shares.

Sell order A sell order specifies the ask price, stock code and number
of shares.

Stock A company listed in a stock exchange. Shares of a company
can be traded only in a multiple of its lot size.

Execution result The result of the execution of a trade order. It contains a
list of transactions.

Transaction The execution of a trade order at a particular price. It also
contains the number of shares traded at that price.

Identifying Associations between Classes

An association is a relationship between objects. For example, John and Peter
are instances of the class person and John is the father of Peter. Association can
be identified by looking for verbs and verb phrases connecting two or more
objects in the problem statement. In the online stock trading system example,
the statement “a client may open one or more accounts for stock trading”
[emphasis added] contains the verb “open” which links the client and the
account. The association between the client and the account may be named as
has since it is an ownership relationship. The association can also be named as
opened by to reflect the action performed by the client. However, the word has
can more accurately describe the nature of the association. Hence, the
association should be named according to its nature rather than according to
the verb or verb phrase linking the classes in the problem statement. Table 2.7
shows the list of verb phrases extracted from the problem statement to identify
the candidate associations.

48 Object-oriented Technology

Table 2.7. Associations identified by extracting verb phrases from the problem
statement

Verb phrase Association

A client may open one or more accounts for stock trading. has

When a client issues a buy order for an account, the client must issued by, buy
specify the stock code, the number of shares and the maximum
price that he is willing to pay for them (the bid price).

When a client issues a sell order for an account, the client must issued by, sell
specify the stock code, the number of shares and the minimum
price that he is willing to sell them at (the ask price).

All trade orders will be forwarded to the stock trading system of executed by
the stock exchange for execution.

When an order is completed, the stock trading system of the stock returned by
exchange will return the transaction details of the order to the
online stock trading system.

The transaction details of a trade order may be a list of consists of
transactions, and each transaction specifies the price and the
number of shares traded.

From the domain knowledge, we have the following associations:

• A stock is listed on a stock exchange
• A stock is traded on a stock trading system of a stock exchange
• The result of a trade order is a list of transactions
• A stock exchange has one or more stock trading systems

Based on the above information, formulate the initial domain class model
for the system as illustrated in Figure 2.24.

Then refine the associations by eliminating unnecessary and inappropriate
associations and by adding additional associations from the knowledge of the
problem domain. Rumbaugh et al. propose the following criteria in Table 2.8 to
determine whether an association should be eliminated.

Chapter 2: Structural Modeling and Analysis 49

Table 2.8. Criteria to eliminate associations

Criteria Description

Associations If a class is eliminated from the domain class model, then all
between associations linking to it should be removed. In some cases,
eliminated classes the dangling links of the classes caused by the removal of a

class may be joined to form a new association.

Irrelevant or Associations that are not directly related to the problem
implementation domain or are only related to the solution of the problem
associations should be eliminated.

Actions The association should define structural relationships between
domain classes, not an event. For example, “the client can
check the status of execution of his (buy or sell) orders”
describes an action performed by the client in an interaction
between the client and the system.

Figure 2.24. Initial domain class model

Account Trade Order

Buy Order Sell Order

buy

executed byhas

sell

Stock Exchange

Client

Stock

listed on

traded on

Stock Trading System

consists of

Execution result

Transaction

issued
by

issued
by

returned by

50 Object-oriented Technology

Table 2.8. (Cont’d)

Criteria Description

Ternary Many associations involving three or more classes can be
associations decomposed into binary associations. For example, “a client

issues a buy order for an account” can be decomposed into two
binary associations: “a client issues an order” and “the order is
associated with the client’s account”.

Derived Remove associations that can be defined in terms of other
associations associations or a condition of the attributes of the classes.

For example, “the stock trading system of the stock exchange
will return the execution result” can be defined in terms of
“a trade order is executed by a stock trading system” or
“the trade order has an execution result”.

Based on these guidelines, the revised domain class model can be refined
as shown in Figure 2.25.

Figure 2.25. Revised domain class model

Account Trade Order

Buy Order Sell Order

executed byhas

Stock Exchange

Client

Stock

listed on

traded on

Stock Trading System

consists of

has

Execution result

Transaction

Chapter 2: Structural Modeling and Analysis 51

Identifying Attributes of Classes and Association Classes

Attributes are properties of a class, such as name, address and telephone
number of the Client class. Look for nouns or noun phrases followed by
possessive phrases, e.g. “address of the client.” Adjectives that appear
immediately before a noun and correspond to a class can also be an enumerated
value of an attribute, e.g. “a canceled buy order.” Attributes are less likely to
be discovered from the problem statement. However, it is not necessary to
identify all attributes in this step because the attributes do not affect the
structure of the domain class model. Instead, this should only be done if they
can be readily identified. At later stages of the development life cycle
(e.g. detailed design phrase), the attributes can be more readily identified.

Structuring Classes Using Inheritance

At this point, most of the classes and associations have been identified, and it
is possible to try to restructure the class diagram using inheritance. Inheritance
provides an effective and convenient way to specify commonality between
classes. Identify inheritance in two opposite directions: top down and
bottom up.

Bottom-up Approach

For the bottom-up approach, we compare the properties of classes to look for
commonality. Usually the names of the classes provide the first hint for the
identification process. Look for classes with similar attributes, operations and
associations with other classes. For example, the Buy Order and Sell Order
classes both have the price and number of shares attributes and both of them
are associated with the Stock class and Account class. Their names also suggest
that they may share similar properties and behaviors.

Also define a superclass to cover classes with a common structure.
For example, the Trade Order class can cover the common structure of the
Buy Order and Sell Order classes. Add an association between the Trade Order
class and the Account class, and between the Trade Order class and the Stock
class. The associations between the Buy Order, Sell Order, Account and Stock
classes should be eliminated as these associations can be derived from
inheritance and the associations of the superclass Trade Order.

Top-down Approach

For the top-down approach, check whether a class has some special cases that
have additional structural or behavioral requirements. Look for noun phrases
consisting of adjectives and class names. For example, the Sell Order and
Buy Order classes are specializations of the Trade Order class. Taxonomies of

52 Object-oriented Technology

real-life objects can also suggest specializations of a class which may not be
included in the problem statement. Think more broadly and use your domain
knowledge in identifying specializations. For example, an Account can be
categorized into two types: Cash Account and Margin Account. The revised
domain class model is shown in Figure 2.26.

Figure 2.26. Revised domain class diagram after restructuring using inheritance
and adding attributes

Stock
ExchangeBuy Order Sell Order

0..n 0..n

listed on

traded on

Stock Trading
System

1

10..n

0..n

executed
by

Account
Trade Order

�date
�price
�number of shares

Client
�ID
�name
�address
�telephone no.

1 0..n0..n0..n
has

Margin
Account

Cash
Account

Execution
result

Stock
�code
�name

Transaction
�price
�number of shares

1 1..n

consists
of

1

1

has

Verifying Access Paths for Likely Queries

One way to verify the correctness and usefulness of the domain class model is
to check whether the domain class diagram can provide correct answers to
queries that are common to other applications in the domain. In the online
stock trading system example, a typical client query would be the current stock
balance of his account. This requires an association between the Account class
and the Stock class to provide the information on the number of shares held in
the account. Although a path from the Account class to the Stock class exists
in the domain class model in Figure 2.26, it would only provide the buy and sell
orders information of the account but not the information on stock balances.
To cope with this additional requirement, an association between the Stock
class and the Account class as illustrated in Figure 2.27 needs to be added.
The domain class model should always provide a correct answer to a typical
query of the system.

Chapter 2: Structural Modeling and Analysis 53

Figure 2.27 Addition of an association between account class and stock class

Stock
ExchangeBuy Order Sell Order

0..n 0..n

listed on

traded on

Stock Trading
System

1

10..n

0..n

executed
by

Account
Trade Order

�date
�price
�number of shares

Client
�ID
�name
�address
�telephone no.

1 0..n0..n0..n
has

Margin
Account

Cash
Account

Execution
result

Stock
�code
�name

Transaction
�price
�number of shares

1 1..n

consists
of

1

1

has

Stock Line
�number of shares

0..n

0..n

Iterating and Refining Model

It is highly unlikely that the correct domain class model can be developed in
one pass. The domain class model needs to be refined several times before it
becomes robust. The development of the domain class model is not a rigid
process, and it is necessary to repeatedly apply the above steps until the
domain class model finally becomes stable. The following checklist can help in
identifying areas of improvement of the domain class model.

• Where a class is without attributes, operations and associations, consider
removing the class.

• Where a class is with many attributes and operations covering a wide area
of requirements, consider splitting the class into two or more classes.

• Where a query cannot be answered by tracing the domain class model,
consider adding additional associations.

• Where there are asymmetries in generalizations and association, consider
adding additional associations and restructuring the classes with
inheritance.

• Where attributes or operations are without a hosting class, consider adding
new classes to hold these attributes and operations.

54 Object-oriented Technology

Tricks and Tips in Structural Modeling and Analysis

Set Focus and Context of Diagram
Make sure the class diagram only deals with the static aspects of the system.
Do not attempt to consolidate everything into one single class diagram. Before
you start to develop the diagram, set the context and the purpose it is to serve
and the scope of the class diagram.

Use Appropriate Names for Classes
The classes can be identified from two sources: domain analysis and use case
analysis. If the classes identified from the use case analysis are similar or
identical to those derived from the domain analysis, that would be a perfect
situation to be in. On the other hand, where inconsistent classes are derived
from these two sources, discuss them with the end users, advising them to use
standard terminologies of the industry, allowing for a dominant player in the
field. If they insist on using their (non-standard) terminologies, it may be
necessary to put the standard ones in the libraries and use subclasses for their
non-standard terminologies specifically for this application.

Organize Diagram Elements
Not only should the classes be structured with various object-oriented
semantics, but also organize their elements spatially to improve readability. For
example, minimize cross lines in the diagram and place the semantically
similar elements close together.

Annotate Diagram Elements
Attach notes to those elements where unclear concepts need to be clarified, and
where necessary, attach external files, documents or links within the notes
(i.e. a http link or a directory path). Some automated CASE tools support such
annotations (e.g. Visual Paradigm for UML), so that resources can be glued into
a navigable visual model.

Refine Structural Model Iteratively and Incrementally
As you progress through the development stages, the structural models can be
enriched from time to time. For example, dynamic models help to identify the

Chapter 2: Structural Modeling and Analysis 55

responsibilities of the classes, or possibly even new classes, implementation
classes and control classes. This concept will be discussed in more details in
Chapter 4 (Dynamic Modeling and Analysis).

Show Only Relevant Associations
If a class is used by a number of use cases or even several applications, the
class may have a number of associations that are related to different contexts.
In the diagram, only show the associations related to the context that you are
concerned with and hide the irrelevant associations. Do not attempt to
consolidate all the associations and classes into a large class model as this
cannot be easily managed by most people.

Domain Modeling and Analysis with VP-UML
In this section, the use of the key features of VP-UML to perform domain
analysis will be demonstrated. The online stock trading system discussed
earlier will be used in this chapter as an example. Simply follow the
instructions on the following pages to create the sample domain class diagram.
Follow the steps below to perform the domain model and analysis:

1. Prepare problem statement for the system being developed
2. Identify objects and classes
3. Develop data dictionary
4. Identify associations between classes
5. Identify attributes of classes and association classes
6. Structure object classes using inheritance
7. Verify access paths for likely queries
8. Iterate and refine the model

Step 1: Prepare Problem Statement
The problem statement is prepared through interviews with domain experts
familiar with the application domain. Here, the application domain is an online
stock trading system for stock brokerage firms. Alternatively, interview
stakeholders of several stock brokerage firms to directly collect the
requirements information. The problem statement should cover only the
general requirements of an online stock trading system.

56 Object-oriented Technology

First, start up the VP-UML Integrated Development Environment and go
through the following steps to enter the problem statement into VP-UML:

1.1. Click on the application toolbar (see Figure 2.28).

1.2. Type in the following problem statement in the text pane, or open it from
a file (see Figure 2.29).

For a stock brokerage firm that wants to provide an online stock
trading service to enable its clients to make trades via the
computer, a client must first be registered before he can trade
online. The registration process involves the client providing his
ID, address and telephone number. A client may open one or more
accounts for stock trading.

The stock brokerage firm needs to be registered with a stock
exchange before its clients can trade the stocks listed on the stock
exchange. A stock brokerage firm can be registered with one or

Figure 2.28. Domain analysis work area

Chapter 2: Structural Modeling and Analysis 57

more stock exchanges. The stock brokerage firm may need to pay
monthly charges for using the services provided by the stock
exchange.

Once registered, the client can begin to buy and sell stocks.
The client can check the current price, bid price, ask price and
traded volume of a stock in real time. The stock price and traded
volume information is provided by the stock exchange on which
the stock is listed and traded. When a client issues a buy order for
an account, the client must specify the stock code, the number of
shares and the maximum price (bid price) that he is willing to pay
for them. A client must have sufficient funds in his account to
settle the transaction when it is completed. When a client issues
a sell order, the client must specify the stock code, the number of
shares and the minimum price (ask price) that he is willing to sell

Figure 2.29. Entering problem statement

58 Object-oriented Technology

them. The client must have sufficient number of shares of the
stock in his account before he can issue the sell order. A client can
check the status of execution of his (buy or sell) orders.

The client can issue a buy or sell order before the end of the
trading hours of a trading day of the stock exchange which
processed the order. All trade orders will be forwarded to the stock
trading system of the stock exchange for execution. When an order
is completed, the stock trading system of the stock exchange will
return the transaction details of the order to the online stock
trading system. The transaction details of a trade order may be a
list of transactions, and each transaction specifies the price and
the number of shares traded. For example, the result of a buy
order of 20,000 HSBC (stock code: 0005) shares at HKD 88.00 in
the Hong Kong Stock Exchange may be as follows:

• 4,000 shares at HKD 87.50
• 8,000 shares at HKD 87.75
• 8,000 shares at HKD 88.00

An order will be kept on the system for execution until the
order is completed or the end of a trading day. There are three
possible outcomes for a trade order:

1. The trade order is completed. For a buy order, the total
amount for the buy order will be deducted from the client’s
account and the number of shares of the stock purchased will
be deposited into the account. For a sell order, the number of
shares sold will be deducted from the client’s account and the
proceeds of the sell order will be deposited into the account.

2. The trade order is partially completed. The number of shares
actually traded (sell or buy) is less than the number of shares
specified in the order. The number of shares successfully
traded in the order will be used to calculate the amount of the
proceeds, and the client’s account is adjusted accordingly.

3. The trade order is not executed by the end of a trading day.
The order is canceled.

A stock exchange may require that the number of shares
specified in an order must be in multiples of the lot size of the

Chapter 2: Structural Modeling and Analysis 59

stock. Each stock has its own lot size. Commonly used lot sizes are
1, 400, 500, 1,000 and 2,000 shares.

The client can deposit or withdraw cash or stock shares from
his account. Upon the deposit or withdrawal of cash or stock
shares, the account cash or stock balance will be updated
accordingly.

Step 2: Identify Objects and Classes
Once the problem statement is entered into the case tool, the next step is to
identify objects and classes in the textual analysis working area.

2.1. Let us highlight the term client as a candidate class (see Figure 2.30) and
drag it to the Candidate Class Container on the top right hand corner.

2.2. Notice that all occurrences of the same class in the problem statement is
highlighted automatically (see Figure 2.31).

2.3. Repeat the above steps to identify the remaining classes:

• Trade Order
• Account
• Stock Exchange
• Buy Order
• Transaction
• Sell Order
• Stock Trading System
• Execution Result
• Stock

Step 3: Develop Data Dictionary
Let us define the candidate classes identified in Step 1. Select the Class
Description cell next to the classes – Client. Enter the following description
in the Class Description cell next to the class (see Figure 2.32). Adjust the
size of the cell to view the whole description.

An individual or a company registered with the stock brokerage firm for the
use of online stock trading services. The class has attributes address, telephone
number and ID. A client can have one or more accounts.

60 Object-oriented Technology

Figure 2.30. Highlighting the word client

Figure 2.31. All occurrences of the word client are highlighted automatically

Chapter 2: Structural Modeling and Analysis 61

Repeat the above steps to complete the dictionary for all remaining
candidate classes.

When the data dictionary has been defined, create the models from the
candidate classes. To create a model, right click on the candidate class and
select Create Class Model (see Figure 2.33). After that is done, the type of the
candidate class will change to Generated Model, and the class model is
created in the Class Repository.

Figure 2.32. Data dictionary

Figure 2.33. Create model from Candidate Class

62 Object-oriented Technology

Figure 2.35. Create a Class Diagram

The candidate classes can be viewed by clicking the Class Browser tab at
the bottom left corner of the screen (see Figure 2.34).

Step 4: Identify Associations between Classes
Having identified the candidate classes, the next step is to identify the
associations among them. By analyzing the verb phrases in the problem
statement, we find that the verb open connects two candidate classes in the
statement “a client may open one or more accounts for stock trading.” This is
a “has a” relationship between Client and Account. So we can create an
association between Client and Account.

4.1. Create a class diagram by right clicking the Class Diagram button on the
toolbar and select Create Class Diagram (see Figure 2.35). A new class
diagram will appear in the diagram pane.

Figure 2.34. Class browser

Chapter 2: Structural Modeling and Analysis 63

4.2. Drag the class Client from the Class Browser and drop it to the Class
Diagram (see Figure 2.36).

Figure 2.36. Creating class using Class Browser

Figure 2.37. Creating Class Client

4.3 The class Client now appears in the Class Diagram (see Figure 2.37).

4.4 Repeat the previous steps to create the class Account in the Class
Diagram.

64 Object-oriented Technology

4.5 To create an association between Client and Account, select the class

Client, then click the association icon from the resource-centric
interface and drag it to the class Account. The association between the
Client and Account classes will then be created (see Figure 2.38).

Figure 2.38. Making an association between the classes Client and Account

4.6 Repeat the above steps to complete all other associations. Figure 2.39
shows the initial class model for the system.

Step 5: Identify Attributes of Classes and Association Classes
At this point, the basic structure of the domain class model is up and running.
The domain class model should be refined by adding attributes to individual
classes. As discussed earlier, attributes can be identified by textual analysis on
nouns, noun phrases or adjectives. Look for nouns or noun phrases followed by
a possessive phrase and a noun and corresponding to a class, e.g. address of the
client. Adjectives appearing immediately before a noun and corresponding to a
class can also be an enumerated value of a class’s attribute, e.g. a canceled sales
order. Follow the instructions below to add attributes to individual classes.

5.1. To create attributes in VP-UML, first select a class. Right click on the
class Client, then select New Attribute (Figure 2.40).

5.2. Type in the attribute in the in-line text editing area and then press
enter (see Figure 2.41).

5.3. Repeat the above steps to enter the attributes of the other classes.
The domain class diagram with attributes is shown in Figure 2.42.

Chapter 2: Structural Modeling and Analysis 65

Figure 2.39. The initial domain class diagram

Figure 2.40. Adding an attribute

66 Object-oriented Technology

Figure 2.41. Editing an attribute name

Figure 2.42. Initial domain class diagram with attributes

Chapter 2: Structural Modeling and Analysis 67

Step 6: Structure Object Classes Using Inheritance
As most classes have now been identified, start to reorganize the classes in
order to further improve reusability and cohesion. We eliminate duplication of
classes by singling out the common attributes and operations into superclasses.
The cohesion within a class can be improved by breaking a “loosely coupled”
class into two or more classes which may be related by inheritance or
association.

6.1. By adopting the top-down approach, we discover that the class Account
has two subtypes, Cash Account and Margin Account. To structure the
Cash Account and Account classes using inheritance, first create the
Cash Account and Margin Account subclasses.

6.2. Select the Account class. Then click on the icon from the resource-
centric interface, and drag and place it on the Cash Account class. The
inheritance relationship between Account and Cash Account is then
specified (see Figure 2.43).

Figure 2.43. Creating inheritance relationship between Margin Account and
Cash Account

6.3. Repeat the above steps to create the inheritance relationship between the
Margin Account and Account classes. The restructured domain class
diagram is shown in Figure 2.44.

68 Object-oriented Technology

Step 7: Verify Access Paths for Likely Queries
Now verify the class diagram to see whether it can support typical queries of
the application domain. Let us consider the following query: How does a client
find out the stock balance of his account?

By examining the class diagram, the query cannot be answered directly as
the class diagram can only show the transactions performed by the client.
Of course the balance of a stock can be determined by all the transactions of
the stock performed by the client. However, it is rather inconvenient and
inefficient as a large number of transactions may be involved. Therefore,
an association is added between Account and Stock. Follow the steps below to
add the required association.

7.1. Follow the instructions given in Step 3 to create an association between
Account and Stock, after which a domain class diagram like Figure 2.45
will be created.

Figure 2.44. Restructured domain class diagram

Chapter 2: Structural Modeling and Analysis 69

Figure 2.45. Adding an association between Account and Stock

7.2. Now create an association class between Account and Stock to keep track
of the balance of a stock in an account. Follow Step 6 to create the class

StockLine. Click on the icon on the diagram palette, then click the
StockLine class and drag it to the association.

7.3. Edit the name of the class in the in-line editing area of the class.
A revised domain class diagram like Figure 2.46 will then be created.

Step 8: Iterate and Refine Model
Repeatedly apply Steps 2 to 7 to refine the domain class model until it becomes
stable.

70 Object-oriented Technology

Summary
A structural model provides a static view of a system, showing its key
components and their relationships. In the UML notation, a structural model
is represented by a class diagram.

In performing structural modeling and analysis, we start off with the
problem statement to identify the domain objects and classes, which in turn can
be used to compile a data dictionary for the system. By determining the
associations between the classes and by identifying the attributes of the classes,
the domain’s class diagram can be created. The diagram can be structured more
concisely for implementation by using inheritance. Finally, access paths for
likely queries are verified and the model can be further refined by repeating
this modeling and analysis procedure.

To illustrate the concepts described in this chapter, the modeling and
analysis of an online stock trading system has been presented, detailing the
steps involved by using the powerful features of the VP-UML CASE tool.

Figure 2.46. Revised domain class diagram after first iteration

Chapter 2: Structural Modeling and Analysis 71

Exercise
Consider the following problem statement:

Problem Statement of an Online Book Store

The Pearl River Book Company is developing an online book store system
through which its customers can buy books and sell their used books.
Public users are those who are not registered customers of the system.

Public users or registered customers can search books by entering
keywords, which may appear in the title, author or book description. The
system displays a list of books that matches the keywords. Each entry of
the book list consists of the book title, author(s), price for a new copy and
price range for used copies. The user can select a book from the list to
display more detailed information about it (availability, price for new
copy, prices for used copies, table of contents, author, ISBN). The user
can add a copy of the book (either new or old) to the shopping cart. The
user can then continue to search for another book. When the user
finishes searching, the user can checkout the books in the shopping cart.
The system asks the user to login to his/her account by entering the
user’s email address and the account password. If the user has not
registered yet, the user can register for a new customer account at that
point. The user enters the email address, home address and password.
The system verifies that the email address has not been used by an
existing customer before confirming the creation of the new customer
account through an email message. The system then asks the user to
select the shipping option (express, priority or ordinary). Different
shipping options have different prices. The user can then select the
payment method (credit card or the user account of the book store). If the
user selects payment by credit card, the user enters the card number,
type and expiry date. The system then sends the credit card information
and the amount charged to the external payment gateway. The amount
is calculated by adding the prices of the selected books and the selected
shipping option. If the credit card transaction is approved, the external
payment gateway sends back an approval code. Otherwise, the systems
will ask the user to reselect the payment method and re-enter the
payment information. If the user selects payment by his/her account with
a sufficient balance, the system charges the amount to the customer
account. Otherwise, the system asks the user to re-reselect the payment

72 Object-oriented Technology

method. Upon completion of payment, the system arranges delivery of
the ordered books. An external shipping agent is responsible for the
delivery of the ordered books. If an order involves new books, the system
sends a shipping request to notify the shipping agent to collect the books
from the book store. New books in the same order are shipped together.
If a used book has been ordered, the system sends a delivery request to
notify the seller of the book and a shipping request to the shipping agent
of the book store. The shipping agent collects the book from the seller and
delivers the book to the buyer. Used books of the same order from the
same seller are shipped together. After the book(s) has/have been
delivered to the buyer, the shipping agent sends a shipping completion
message to the system. Upon receipt of this message, the system updates
the seller’s customer account by adding the price of the used book minus
the commission charge for the service.

A public user or a registered customer wanting to sell a used book
can go through the above process by searching the book and displaying
its information. The user can then post a used copy for sale. The system
will ask the user to enter the price and the general condition of the used
book. Then the system further asks the user to enter the email address
and password of his/her customer account for login purposes. If the user
does not have a customer account, the user can create a new customer
account as described in the previous paragraph.

Incrementally and iteratively develop a domain class model for the online
ticket reservation system by following the steps below:

• Identify objects and classes
• Develop a data dictionary
• Identify associations between classes
• Identify attributes of classes and association classes
• Structure object classes using inheritance
• Verify access paths for likely queries
• Iteratively refine the model

